$\begin{array}{l} H \rightarrow bb: \\ \mbox{Searching for the dominant Higgs decay mode at} \\ \mbox{the LHC} \end{array}$

Paolo Francavilla, ILP - LPNHE ILP Day 2014 March 13, 2014, Salle panoramique UPMC

1

H→bb: Why?

- Since 4 July 2012:
 - Discovery of a new spin 0 particle $H \rightarrow \gamma \gamma H \rightarrow ZZ H \rightarrow WW.$
 - No strong deviations from SM Higgs properties.
 - Observed mH ~125 GeV.
 - Some direct evidence of coupling to fermions (H→ττ)
 - Indirect indication of couples to quarks (i.e. in the gluon gluon fusion production)
 - Crucial to get an evidence of the coupling to the quarks in particular to down-type quarks.

- For mH=125 GeV, BR(H→bb)=0.57
 - For very rare processes involving Higgs (SM or exotics processes), like HH production, H→bb good tool to get some statistics

The VH analysis strategy: some numbers

Decay	Z→vv	Z → ee, Z → µµ	Ζ→ττ	Z → had	W → ev W → µv	W→τv	W → had
BR	20%	3.3% 3.3%	3.3%	70%	11% 11%	11%	67%
N. recon. lepton cat.	0	2	/	/	1	(1) lept. decay	/
MHiggs VH →bb events MH=125 (20 fb-1, 8 TeV)	~950	~155 ~155	~155	~3300	~890 ~890	~890	~5400

NOTE: Being one of the leading forces for 0 lepton analysis, Editor of the supporting documentation for the results shown here, and editor of the supporting note of the paper in preparation 4 Paolo Francavilla

The VH analysis strategy: some numbers

Decay	Z→vv	Z → ee, Z → µµ	Ζ→ττ	Z → had	W → ev W → µv	W→τv	W → had
BR	20%	3.3% 3.3%	3.3%	70%	11% 11%	11%	67%
N. recon. lepton cat.	0	2	/	/	1	(1) lept. decay	/
^{SM Higgs} VH →bb events ^{mH=125} (20 fb-1, 8 TeV)	~950	~155 ~155	~155	~3300	~890 ~890	~890	~5400

From these events to the analysis selections:

Trigger,

Lepton reconstruction acceptance and efficiency,

Jet reconstruction acceptance and efficiency,

b-tagging efficiency,

Cut optimisation to suppress the background (i.e. 90<mbb<150)

NOTE: Thanks to some of the people in ILP, we adopted in 2009 a revolutionary jet definition (anti- k_T), and a series of tools which helped us a lot. THANKS!

How an event would look like

How an event would look like

NOTE: Calorimeter plays a relevant role here

(glad to make it working while being Run Coordinator for the Tile Calorimeter in 2011)

How an event would look like

Time: 16:08:25 CEST

The VH analysis strategy: some numbers

	Decay	Z→vv	Z → ee, Z → µµ	Ζ→ττ	Z → had	W→ev W→µv	₩ → τν	W → had
 SM Higgs mH=125 	BR	20%	3.3% 3.3%	3.3%	70%	11% 11%	11%	67%
	N. recon. lepton cat.	0	2	/	/	1	(1) lept. decay	/
	VH →bb events (20 fb-1, 8 TeV)	~950	~155 ~155	~155	~3300	~890 ~890	~890	~5400
	After selections	30	27	/	/	93		/
	Background after selections	1100	2500	/	/	15400		/
	s/sqrt(b)	0.9	0.5	/	/	0	.7	/
	Can we do	some	thing r	nore t	o aet i	more s	sensiti	vitv?

Building the VH analysis

NJets	2 jets	3 jets				
0 leptons s/b	3%	1.6%				
1 lepton s/b	0.9%	0.3%				
2 leptons s/b 1% 0.9%						
Different S/B for 2 and 3 jets events. (ttbar in 1 lepton analysis)						

Paolo Francavilla

The idea: split the analysis in bins of jet multiplicity and pT(V)

DATA 2011: 4.7 fb-1 @ sqrt(s)=7 TeV 2012: ~21 fb-1 @ sqrt(s)=8 TeV

<u>MC</u>
WH/ZH PYTHIA8
Top POWHEG+PYTHIA
Single Top ACER/POWHEG+PYTHIA
W+jets SHERPA
Z+jets SHERPA
Diboson (WW,WZ,ZZ) HERWIG

ſ	рт	0-90	90-120	120-160	160-200	> 200
	ΔR(j,j)	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	< 1.4

DATA 2011: 4.7 fb-1 @ sqrt(s)=7 TeV 2012: ~21 fb-1 @ sqrt(s)=8 TeV

<u>MC</u> WH/ZH PYTHIA8 Top POWHEG+PYTHIA Single Top ACER/POWHEG+PYTHIA W+jets SHERPA Z+jets SHERPA Diboson (WW,WZ,ZZ) HERWIG

Reconstructed lepton categories

DATA 2011: 4.7 fb-1 @ sqrt(s)=7 TeV 2012: ~21 fb-1 @ sqrt(s)=8 TeV

<u>MC</u> WH/ZH PYTHIA8 Top POWHEG+PYTHIA Single Top ACER/POWHEG+PYTHIA W+jets SHERPA Z+jets SHERPA Diboson (WW,WZ,ZZ) HERWIG

рт	0-90	90-120	120-160	160-200	> 200	
ΔR(j,j)	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	< 1.4	
•					•••	
• • •		2jets, 1- tags	3jets, 1-tags	2jets, 2-tags	i 3jets, 2- tags	Top emu CR
$3 p_T^V$ bins x	0-lepton	Norm	Norm	Shape	Shape	-
5 p _T ^v bins x	1-lepton	Norm	Norm	Shape	Shape	-
5 p_T^V bins x	2-lepton	Norm	Norm	Shape	Shape	Norm

Regions used to control the backgrounds

рт

ATLAS-CONF-2013-079

VH→bb Results

The analysis is complex, but fortunately we have a candle to validate it: $VZ \rightarrow bb$

We hope to arrive soon to a new VH result in ATLAS. ttH and VBF ongoing

- Given the table: possible improvements:
 - Increase the signal acceptance
 - Improve the background rejection (i.e. multi variate analysis)
- Two big constrains:
 - Several backgrounds need to be dominated,
 - A better understanding of the detector performance (i.e. B-tagging, jets, MET)

statistics

		-			_	Peak luminosity —Int	egrated luminosity	
P	Perspectives				Run 1 R 7-8 TeV ⊨	tun 2 Run 3 → 13-14 TeV	Run 4	1000.0
Assum I No oth No det i No per No lim	hing just luminosity and cro tt(14 TeV)/tt(8 TeV) :3.9 EW(14 TeV)/EW(8 TeV):1.9 her analysis improvement as terioration of performance d i.e. trigger, pile-up formance improvements as itation due to systematic ur	ss section sc sumed lue to operations sumed incertainty ass	aling: on condition	4.00E+34 4.00E+34 3.00E+34 2.00E+34 2.00E+34 Design (1.00E+34 Luminosity 0.00E+04	2010 2011 2013 2013 2014	CS CS CS CS CS CS CS CS CS CS	4 4 4 4 4 4 4 4 4 4 4 4 4 4	HL-LHC 1000 100 100 100 100 100 100 100
	Decay	Z→vv	Z → ee, Z → µµ	Ζ→ττ	Z → hac	d W→ev W→µv	W→τv	W → had
	VH →bb events (100 fb	11000	1800 1800	1800	39000	9500 9500	9500	58000
	After selections*	350	340	/	/	99	92	/
	Background after selections*	13500	26000			246	000	
	s/sqrt(b)	3	2			1	.3	

Note: ingenuity will improve these numbers!!

Performances:Jet substructures

In the current analysis, we require at least 2 jets. If pT(H) > 300-400 GeV non negligible fraction of events will have the Higgs decay products reconstructed in a jet with R =1 or 1.2.

So, if we want to get more and more sensitivity from the boosted regime,

- we have to make sure we are not loosing events because they do not pass the 2 jet selection
- 2) we need to use the best technology to reconstruct the Higgs candidate.
 - 1) small R sizes?
 - 2) jet substructure techniques?

Very active community in HEP developing jet substructure techniques. Possible option to deeply investigate for VH→bb for Run 2 and in searches of new physics with H→bb NOTE: glad to help on this being MET sub- convener 2013-2014

Performances: MET

Used in VH to estimate the $Z \rightarrow vv p_T$, the reconstruct the W p_T , to suppress the top background in $Z \rightarrow II$

Widely used in ATLAS, in standard model measurement, and particularly interesting in new physics (SUSY, Dark Matter,...) searches

naive definition: measurement of what is missing in the transverse plane to balance the event

Perspectives: H→bb long term

If 2015-2020 will be a crucial period for physics at the LHC, 2035 is not that far... First very preliminary performance studies already done, with incredible high level of pile-up on average 140 interactions per bunch crossing, and just one of this could be the interesting one. If 40 is already a challenge, 140 will be for brave people.

But, among the other possible studies, with 3000 fb -1 of data we can start to approach the door of the double Higgs production.

ESTIMATED YIELDS FOR 3000/fb

bbWW	bbττ	WWW	γγbb	γγγγ	bbvvvv	probably, among the others, bbtt	
30000	9000	6000	320	1	150	could be the most promising	
Given the BR=0.57, signatures with $H\rightarrow$ bb will play a relevant role							

Conclusions

• We have just seen the peak of the iceberg.

Conclusions

• We have just seen the peak of the iceberg.

• Surprises will come!

