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Why is it important?
The Conditional Luminosity Function 5

According to the Press-Schechter formalism (Press &
Schechter 1974), the function f(ν) has the universal form,

νf(ν) = 2

(
ν2

2π

)1/2

exp

(
−ν2

2

)
, (9)

independent of cosmology, redshift, power spectrum and its
normalization (e.g., Bond et al. 1991; Lacey & Cole 1993).
However, various studies have shown that the halo mass
function with this f(ν) is inconsistent with numerical sim-
ulations (e.g., Efstathiou, Ellis & Peterson 1988; Jain &
Bertschinger 1994; Tormen 1998; Gross et al. 1998; Gov-
ernato et al. 1999; Jenkins et al. 2001). Using ellipsoidal
rather than spherical collapse conditions, Sheth, Mo & Tor-
men (2001) derived an improved form for f(ν) given by

ν f(ν) = 2A
(
1 +

1
ν′2q

) (
ν′2

2π

)1/2

exp

(
−ν′2

2

)
(10)

with ν′ =
√

a ν, a = 0.707, q = 0.3 and A ≈ 0.322.
The resulting mass function has been shown to be in excel-
lent agreement with numerical simulations, as long as halo
masses are defined as the masses inside a sphere with an
average overdensity of about 180 (Sheth & Tormen 1999;
Jenkins et al. 2001). Therefore, in what follows we consis-
tently use that definition of halo mass, and we adopt a mass
function with f(ν) given by equation (10). In addition we
use the CDM power spectrum of Bardeen et al. (1986), and
we adopt a spatial top-hat filter for which

ŴM (k; R) =
3

(kR)3
[sin(kR) − kR cos(kR)] (11)

where the mass M and filter radius R are related according
to M = 4πρ̄R3/3.

3.2 The conditional luminosity function

In order to compute a LF from the halo mass function,
we need to specify the conditional luminosity function
Φ(L|M)dL (see equation [1]), which gives the expected num-
ber of galaxies with luminosities in the range L ± dL/2 (in
some chosen photometric band) in a halo of mass M . Note
that Φ(L|M) is a statistical function, and should not be in-
terpreted as the LF of galaxies residing in any individual

dark matter halo.
For massive haloes, such as clusters of galaxies, that

contain many galaxies the shape of Φ(L|M) should be the
same as that of the cluster LF, which can be well described
by a Schechter function. For all mass haloes, the average of
Φ(L|M) over the halo mass function should give the field
galaxy LF. Therefore, we assume that Φ(L|M)dL can be
described by a Schechter function:

Φ(L|M)dL =
Φ̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL (12)

Here L̃∗ = L̃∗(M), α̃ = α̃(M) and Φ̃∗ = Φ̃∗(M); i.e., the
three parameters that describe the conditional LF depend
on M . In what follows we do not explicitly write this mass
dependence, but consider it understood that quantities with
a tilde are functions of M .

With Φ(L|M) defined by equation (12), the total aver-
age luminosity in a halo of mass M is

Figure 2. A comparison of the galaxy LF with the halo mass
function. Open circles with errorbars correspond to the 2dFGRS
LF in the bj -band. Solid (dashed) lines correspond to the LF that
one would obtain from the Sheth & Tormen (Press-Schechter)
halo mass function under the assumption that each halo yields
exactly one galaxy with M/L = 100h (M/L)⊙. Note that un-
der such naive assumptions one expects too many both faint and
bright galaxies, suggesting that in reality the M/L decreases (in-
creases) with mass at the low (high) mass end.

⟨L⟩(M) =

∫ ∞

0

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2) (13)

with Γ(x) the Gamma function. The average number of
galaxies brighter than L̃∗ in a halo of mass M is

N ∗(M) ≡
∫ ∞

L̃∗

Φ(L|M) dL = Φ̃∗ Γ(α̃ + 1, 1). (14)

with Γ(a, x) the incomplete Gamma function.
For each halo, we define a ‘central’ galaxy whose lumi-

nosity we denote by Lc. We assume the central galaxy to be
the brightest one in a halo, consistent with the fact that in
most (if not all) haloes the brightest members reside near
the center. The luminosity of this central galaxy is defined
as

Lc(M) =

∫
∞

L1

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2, L1/L̃∗), (15)

with L1 defined so that a halo of mass M has on average
one galaxy with L > L1, i.e.,
∫

∞

L1

Φ(L|M)dL = 1 . (16)

Note that with this definition, the luminosities of the cen-
tral galaxies in haloes of the same mass are all the same.
We have also experimented with drawing Lc at random from
the distribution function Φ(L|M) at L > L1, but found that
this did not significantly influence our results. We therefore
adopt the definition of equation (15) throughout. This is fur-
ther motivated by numerical simulations and semi-analytical
models of galaxy formation, which suggest that the lumi-
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Supernovae
The Conditional Luminosity Function 5
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independent of cosmology, redshift, power spectrum and its
normalization (e.g., Bond et al. 1991; Lacey & Cole 1993).
However, various studies have shown that the halo mass
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ulations (e.g., Efstathiou, Ellis & Peterson 1988; Jain &
Bertschinger 1994; Tormen 1998; Gross et al. 1998; Gov-
ernato et al. 1999; Jenkins et al. 2001). Using ellipsoidal
rather than spherical collapse conditions, Sheth, Mo & Tor-
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with ν′ =
√

a ν, a = 0.707, q = 0.3 and A ≈ 0.322.
The resulting mass function has been shown to be in excel-
lent agreement with numerical simulations, as long as halo
masses are defined as the masses inside a sphere with an
average overdensity of about 180 (Sheth & Tormen 1999;
Jenkins et al. 2001). Therefore, in what follows we consis-
tently use that definition of halo mass, and we adopt a mass
function with f(ν) given by equation (10). In addition we
use the CDM power spectrum of Bardeen et al. (1986), and
we adopt a spatial top-hat filter for which
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[sin(kR) − kR cos(kR)] (11)

where the mass M and filter radius R are related according
to M = 4πρ̄R3/3.

3.2 The conditional luminosity function

In order to compute a LF from the halo mass function,
we need to specify the conditional luminosity function
Φ(L|M)dL (see equation [1]), which gives the expected num-
ber of galaxies with luminosities in the range L ± dL/2 (in
some chosen photometric band) in a halo of mass M . Note
that Φ(L|M) is a statistical function, and should not be in-
terpreted as the LF of galaxies residing in any individual

dark matter halo.
For massive haloes, such as clusters of galaxies, that

contain many galaxies the shape of Φ(L|M) should be the
same as that of the cluster LF, which can be well described
by a Schechter function. For all mass haloes, the average of
Φ(L|M) over the halo mass function should give the field
galaxy LF. Therefore, we assume that Φ(L|M)dL can be
described by a Schechter function:

Φ(L|M)dL =
Φ̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL (12)

Here L̃∗ = L̃∗(M), α̃ = α̃(M) and Φ̃∗ = Φ̃∗(M); i.e., the
three parameters that describe the conditional LF depend
on M . In what follows we do not explicitly write this mass
dependence, but consider it understood that quantities with
a tilde are functions of M .

With Φ(L|M) defined by equation (12), the total aver-
age luminosity in a halo of mass M is

Figure 2. A comparison of the galaxy LF with the halo mass
function. Open circles with errorbars correspond to the 2dFGRS
LF in the bj -band. Solid (dashed) lines correspond to the LF that
one would obtain from the Sheth & Tormen (Press-Schechter)
halo mass function under the assumption that each halo yields
exactly one galaxy with M/L = 100h (M/L)⊙. Note that un-
der such naive assumptions one expects too many both faint and
bright galaxies, suggesting that in reality the M/L decreases (in-
creases) with mass at the low (high) mass end.

⟨L⟩(M) =

∫ ∞

0

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2) (13)

with Γ(x) the Gamma function. The average number of
galaxies brighter than L̃∗ in a halo of mass M is

N ∗(M) ≡
∫ ∞

L̃∗

Φ(L|M) dL = Φ̃∗ Γ(α̃ + 1, 1). (14)

with Γ(a, x) the incomplete Gamma function.
For each halo, we define a ‘central’ galaxy whose lumi-

nosity we denote by Lc. We assume the central galaxy to be
the brightest one in a halo, consistent with the fact that in
most (if not all) haloes the brightest members reside near
the center. The luminosity of this central galaxy is defined
as

Lc(M) =

∫
∞

L1

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2, L1/L̃∗), (15)

with L1 defined so that a halo of mass M has on average
one galaxy with L > L1, i.e.,
∫

∞

L1

Φ(L|M)dL = 1 . (16)

Note that with this definition, the luminosities of the cen-
tral galaxies in haloes of the same mass are all the same.
We have also experimented with drawing Lc at random from
the distribution function Φ(L|M) at L > L1, but found that
this did not significantly influence our results. We therefore
adopt the definition of equation (15) throughout. This is fur-
ther motivated by numerical simulations and semi-analytical
models of galaxy formation, which suggest that the lumi-
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three parameters that describe the conditional LF depend
on M . In what follows we do not explicitly write this mass
dependence, but consider it understood that quantities with
a tilde are functions of M .

With Φ(L|M) defined by equation (12), the total aver-
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Figure 2. A comparison of the galaxy LF with the halo mass
function. Open circles with errorbars correspond to the 2dFGRS
LF in the bj -band. Solid (dashed) lines correspond to the LF that
one would obtain from the Sheth & Tormen (Press-Schechter)
halo mass function under the assumption that each halo yields
exactly one galaxy with M/L = 100h (M/L)⊙. Note that un-
der such naive assumptions one expects too many both faint and
bright galaxies, suggesting that in reality the M/L decreases (in-
creases) with mass at the low (high) mass end.
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with Γ(a, x) the incomplete Gamma function.
For each halo, we define a ‘central’ galaxy whose lumi-

nosity we denote by Lc. We assume the central galaxy to be
the brightest one in a halo, consistent with the fact that in
most (if not all) haloes the brightest members reside near
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as
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one galaxy with L > L1, i.e.,
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Note that with this definition, the luminosities of the cen-
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We have also experimented with drawing Lc at random from
the distribution function Φ(L|M) at L > L1, but found that
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The Conditional Luminosity Function 5

According to the Press-Schechter formalism (Press &
Schechter 1974), the function f(ν) has the universal form,
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)1/2
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2
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, (9)

independent of cosmology, redshift, power spectrum and its
normalization (e.g., Bond et al. 1991; Lacey & Cole 1993).
However, various studies have shown that the halo mass
function with this f(ν) is inconsistent with numerical sim-
ulations (e.g., Efstathiou, Ellis & Peterson 1988; Jain &
Bertschinger 1994; Tormen 1998; Gross et al. 1998; Gov-
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2
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with ν′ =
√

a ν, a = 0.707, q = 0.3 and A ≈ 0.322.
The resulting mass function has been shown to be in excel-
lent agreement with numerical simulations, as long as halo
masses are defined as the masses inside a sphere with an
average overdensity of about 180 (Sheth & Tormen 1999;
Jenkins et al. 2001). Therefore, in what follows we consis-
tently use that definition of halo mass, and we adopt a mass
function with f(ν) given by equation (10). In addition we
use the CDM power spectrum of Bardeen et al. (1986), and
we adopt a spatial top-hat filter for which

ŴM (k; R) =
3

(kR)3
[sin(kR) − kR cos(kR)] (11)

where the mass M and filter radius R are related according
to M = 4πρ̄R3/3.

3.2 The conditional luminosity function

In order to compute a LF from the halo mass function,
we need to specify the conditional luminosity function
Φ(L|M)dL (see equation [1]), which gives the expected num-
ber of galaxies with luminosities in the range L ± dL/2 (in
some chosen photometric band) in a halo of mass M . Note
that Φ(L|M) is a statistical function, and should not be in-
terpreted as the LF of galaxies residing in any individual

dark matter halo.
For massive haloes, such as clusters of galaxies, that

contain many galaxies the shape of Φ(L|M) should be the
same as that of the cluster LF, which can be well described
by a Schechter function. For all mass haloes, the average of
Φ(L|M) over the halo mass function should give the field
galaxy LF. Therefore, we assume that Φ(L|M)dL can be
described by a Schechter function:

Φ(L|M)dL =
Φ̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL (12)

Here L̃∗ = L̃∗(M), α̃ = α̃(M) and Φ̃∗ = Φ̃∗(M); i.e., the
three parameters that describe the conditional LF depend
on M . In what follows we do not explicitly write this mass
dependence, but consider it understood that quantities with
a tilde are functions of M .

With Φ(L|M) defined by equation (12), the total aver-
age luminosity in a halo of mass M is

Figure 2. A comparison of the galaxy LF with the halo mass
function. Open circles with errorbars correspond to the 2dFGRS
LF in the bj -band. Solid (dashed) lines correspond to the LF that
one would obtain from the Sheth & Tormen (Press-Schechter)
halo mass function under the assumption that each halo yields
exactly one galaxy with M/L = 100h (M/L)⊙. Note that un-
der such naive assumptions one expects too many both faint and
bright galaxies, suggesting that in reality the M/L decreases (in-
creases) with mass at the low (high) mass end.

⟨L⟩(M) =

∫ ∞

0

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2) (13)

with Γ(x) the Gamma function. The average number of
galaxies brighter than L̃∗ in a halo of mass M is

N ∗(M) ≡
∫ ∞

L̃∗

Φ(L|M) dL = Φ̃∗ Γ(α̃ + 1, 1). (14)

with Γ(a, x) the incomplete Gamma function.
For each halo, we define a ‘central’ galaxy whose lumi-

nosity we denote by Lc. We assume the central galaxy to be
the brightest one in a halo, consistent with the fact that in
most (if not all) haloes the brightest members reside near
the center. The luminosity of this central galaxy is defined
as

Lc(M) =

∫
∞

L1

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2, L1/L̃∗), (15)

with L1 defined so that a halo of mass M has on average
one galaxy with L > L1, i.e.,
∫

∞

L1

Φ(L|M)dL = 1 . (16)

Note that with this definition, the luminosities of the cen-
tral galaxies in haloes of the same mass are all the same.
We have also experimented with drawing Lc at random from
the distribution function Φ(L|M) at L > L1, but found that
this did not significantly influence our results. We therefore
adopt the definition of equation (15) throughout. This is fur-
ther motivated by numerical simulations and semi-analytical
models of galaxy formation, which suggest that the lumi-
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In order to compute a LF from the halo mass function,
we need to specify the conditional luminosity function
Φ(L|M)dL (see equation [1]), which gives the expected num-
ber of galaxies with luminosities in the range L ± dL/2 (in
some chosen photometric band) in a halo of mass M . Note
that Φ(L|M) is a statistical function, and should not be in-
terpreted as the LF of galaxies residing in any individual

dark matter halo.
For massive haloes, such as clusters of galaxies, that

contain many galaxies the shape of Φ(L|M) should be the
same as that of the cluster LF, which can be well described
by a Schechter function. For all mass haloes, the average of
Φ(L|M) over the halo mass function should give the field
galaxy LF. Therefore, we assume that Φ(L|M)dL can be
described by a Schechter function:

Φ(L|M)dL =
Φ̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL (12)

Here L̃∗ = L̃∗(M), α̃ = α̃(M) and Φ̃∗ = Φ̃∗(M); i.e., the
three parameters that describe the conditional LF depend
on M . In what follows we do not explicitly write this mass
dependence, but consider it understood that quantities with
a tilde are functions of M .

With Φ(L|M) defined by equation (12), the total aver-
age luminosity in a halo of mass M is

Figure 2. A comparison of the galaxy LF with the halo mass
function. Open circles with errorbars correspond to the 2dFGRS
LF in the bj -band. Solid (dashed) lines correspond to the LF that
one would obtain from the Sheth & Tormen (Press-Schechter)
halo mass function under the assumption that each halo yields
exactly one galaxy with M/L = 100h (M/L)⊙. Note that un-
der such naive assumptions one expects too many both faint and
bright galaxies, suggesting that in reality the M/L decreases (in-
creases) with mass at the low (high) mass end.

⟨L⟩(M) =

∫ ∞

0

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2) (13)

with Γ(x) the Gamma function. The average number of
galaxies brighter than L̃∗ in a halo of mass M is

N ∗(M) ≡
∫ ∞

L̃∗

Φ(L|M) dL = Φ̃∗ Γ(α̃ + 1, 1). (14)

with Γ(a, x) the incomplete Gamma function.
For each halo, we define a ‘central’ galaxy whose lumi-

nosity we denote by Lc. We assume the central galaxy to be
the brightest one in a halo, consistent with the fact that in
most (if not all) haloes the brightest members reside near
the center. The luminosity of this central galaxy is defined
as

Lc(M) =

∫
∞

L1

Φ(L|M) L dL = Φ̃∗ L̃∗ Γ(α̃ + 2, L1/L̃∗), (15)

with L1 defined so that a halo of mass M has on average
one galaxy with L > L1, i.e.,
∫

∞

L1

Φ(L|M)dL = 1 . (16)

Note that with this definition, the luminosities of the cen-
tral galaxies in haloes of the same mass are all the same.
We have also experimented with drawing Lc at random from
the distribution function Φ(L|M) at L > L1, but found that
this did not significantly influence our results. We therefore
adopt the definition of equation (15) throughout. This is fur-
ther motivated by numerical simulations and semi-analytical
models of galaxy formation, which suggest that the lumi-
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AGN

•Drive evolution of high mass galaxies
•Negative Feedback:

•Possible positive feedback? (Croft+ 2006, Mould+ (2000), Morganti+ (2010))

Artist Impression

•Expel Baryons
•Heat interstellar gas        Halt cooling

Simulations
•Able to quench cooling flows in clusters
•May also show positive feedback? (Gaibler+ 2012)

                    Dubois+ (2011+), Martizzi+ (2012+), Springel+ (2005), Di Matteo+ (2005+)
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Star Formation in Simulations

1 \

•Density threshold (                           )  (most common, RAMSES)
•Restricting star-formation to gas below some temp
•Jeans unstable
•Convergent flows
•Short gas cooling time
•Molecular criteria (restricting SF to the ‘molecular gas’)
•Turbulence criteria
•Other possibilities?

Physical interpretation depends on resolved 
dynamic range of simulation and the mean 

properties of the galaxy 

•Models impose ‘local Schmidt-law’:

•Some additional criteria or restrictions are included:
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Positive Feedback?
Feedback influences Star Formation 

Star FormationSupernovae (SNe bubbles)

AGN Star Formation (jet induced)?

Jet-induced star formation in gas-rich galaxies 3

Figure 1. Density volume rendering of the central part of the domain (32 kpc box length) at t = 14 (left) and t = 22 Myr (right). Only
the z > 0 half is shown and densities close to the ambient X-ray gas are transparent to give a tomographic view. The colour bars show
log ρ in units of mp cm−3.

Figure 2. Density volume rendering of the high density gas in the disc (face-on view) at t = 14 (left) and t = 22 Myr (right). The box
length is 32 kpc, lower density regions are transparent and the colour scale is the same as in Fig. 1.

cylindrical orifice of jet plasma (density 5× 10−5 mp cm
−3,

speed 0.8 c) with the same pressure as the environment, a
radius of rj = 0.4 kpc and an initial length in both directions
of 3rj, respectively.

We include radiative cooling by a tabulated cool-
ing function for atomic processes down to 104 K as
Sutherland & Dopita (1993) with a metallicity Z = 0.5Z⊙

(Erb 2008), which is a very important effect in the disc
due to the high densities and correspondingly short cooling
times. No strong dependence on the metallicity or the exact
form of the cooling function is expected since the mechanism
found in our simulations can simply be understood by the
fact that the cooling becomes more efficient (shorter cooling
times) for denser gas. To avoid the need to include a fine-
tuned feedback recipe to stabilize the cooling disc against the
vertical gravity component we exclude gravity in the simu-
lations and stabilize the disc by imposing a minimum tem-
perature of 104 K, which mimics a strong radiative heating
from the stars that prevents any cooling below the thresh-

old although this might still be expected in dense, shielded
regions.

Since cooling is included, no truly static setup of the
disc is possible and we run control simulations of the disc
without the jet for comparison in order to monitor the evo-
lution of the undisturbed disc. In contrast to Paper I, we
use constant pressure for the initial conditions of the en-
tire domain, however enforcing a pressure corresponding to
a minimum temperature of Tmin/µ = 104 K where neces-
sary (µ: mean particle mass in proton masses). Although
the disc gas cools rapidly to Tmin and drops out of pressure
balance, it shows only little evolution in the fluid variables
with little impact on the dynamics (however, resulting in
a different jet asymmetry than in Paper I). To allow for a
more relaxed disc state, the jet of power Lkin = 5.5 × 1045

erg s−1 is only started at t = 10 Myr. The simulations are
carried out using the RAMSES 3.0 code (Teyssier 2002), a
non-relativistic second-order Godunov-type shock-capturing
adaptive mesh refinement code. The grid is refined to the
maximum of 62.5 pc cell size in all regions of interest. For the

c⃝ ??? RAS, MNRAS 000, 1–14

Gaibler+ (2012)
•Jet pressurises disc 

Jet-induced star formation in gas-rich galaxies 7

Figure 6. Pressure slices through z = 0 at t = 13 (left) and t = 22 Myr (right), showing log p normalized to the ambient pressure.

Figure 7. Evolution of the mass inside a spherical region r < r0
around the centre with r0 = 2 kpc and 3 kpc. Initially overwriting
the jet nozzle region accounts for 5.4×108M⊙, and < 109M⊙ over
the entire run time.

the galactic nucleus, stable jets showing only small opening
angles of a few degrees. As jets expand slowly, their density
decreases ∝ r−2 with distance (however, note that a Lorentz
factor ≫ 1 on the pc scale increases the effective density of
the jet). Correspondingly, the jet might become underdense
already at the scale of 10 pc to reach the strong density con-
trast we have at the kpc scale. These numbers are clearly
very dependent on the jet properties and the gas distribu-
tion in the centre of the galaxy, but help putting this early
stage into context. Once the two blast waves have merged,
the evolution becomes independent of the initial blast wave
locations. This consideration tells us that our setup is ro-
bust and despite the expected morphological differences at
small scales, the results of this study would not be affected
significantly.

Some disc gas gets expelled by the interaction with the
jet, as can be determined by the compressible disc gas tracer
field. A mass of the order of a few 108M⊙ on each side (for
|x| > 10 kpc) is moved outwards from the initial disc (|x| < 4
kpc) with an asymmetric distribution (2 vs. 8 × 108 M⊙),
as expected for the asymmetric interaction with the disc
gas. By t = 24 Myr, it extends out to ≈ 20 kpc above
the disc plane. We note that the star formation at larger

distances from the disc (more than 10 kpc above the disc
plane) is ignored in our SFR – it is generally low (107 M⊙

for n⋆ = 5 cm−3 during the entire simulation).

3.2 Phase B: Ring-like star formation

While the blast wave creates a cavity in the disc centre, it
pushes gas outward and compresses the disc at the cavity
boundary with a ring-like or hour-glass shape. While the
bow shock in vertical direction reaches out to lower den-
sities, where the propagation becomes easier, it is much
harder near the disc plane. The dense clumps in the disc
with densities of > 10mp cm

−3 have cooling times of ! 100
yr at temperatures slightly above T ∼ Tmin. Once they get
shocked by the blast wave, they are compressed but lose
their pressure support almost instantly, which prevents later
re-expansion (see also the simulations by Mellema et al.
2002; Fragile et al. 2004). This happens even after the bow
shock has passed since the post-shock pressure is ∼ 103

times higher than initially in the disc, causing the clumps
to collapse further.

The bow shock does not propagate very far into the
disc due to the large mass in the disc and since the lat-
eral expansion stalls once the jet has broken through the
disc vertically. The strong compression of gas at the cav-
ity boundary, however, leads to very efficient star formation
with a ring-like morphology. Although our physical under-
standing of star formation is still limited, it is clear that
high gas densities and a strong increase in environmental
pressure have a strong impact on the actual star formation
processes in molecular clouds (Krumholz et al. 2011), which
can not be modelled within this simulation.

The strong increase in density can also be seen clearly
in the filling factor of the dense gas (Fig. 8). Before the jet
is launched, the filling factor for high-density gas decreases
since this phase at T = Tmin has a higher pressure than
the lower density gas and expands (this is the relaxation
process). However, once the jet becomes active the filling
factor increases by approximately one order of magnitude.
The largely increased mass in dense regions then results in
much larger star formation.

c⃝ ??? RAS, MNRAS 000, 1–14
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Pressurised Disk

Simulations:
•Runs with RAMSES code, 40 pc resolution: 

 

•NFW halo, 11.4 10   M   , Bulge
•galaxy1: 10% gas, v200(km/s)=70, typ radius = 3.4 kpc
•galaxy2: 50% gas, v200(km/s)=70, typ radius = 3.4 kpc
•galaxy3: 50% gas, v200(km/s)=70, typ radius = 1.2 kpc

.10

•Pure adiabatic hydrostatic case (Teyssier 2002)
•Pure cooling and star formation
•Stellar feedback (Teyssier+ 2013)
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Non-pressurised Disk
10% Gas 50% Gas
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Feedback

AGN

Star Formation

?
1.  Pressurised disc (ongoing)

2.  AGN jet
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Slows down Star Formation in Galaxies

Weinmann 2011
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Figure 1. The observed sSFR plateau. Shown are measurements
of specific star-formation rate as a function of redshift for galaxies
in a similar stellar mass range ∼ (0.2−1)·1010M⊙. The references
are marked and listed in the text. The grey belt captures most
of the measurements, and reflects the uncertainty of ±0.3 dex
estimated by González et al. (2010). It indicates a constant sSFR
∼ 2 Gyr−1 in the range z = 2 − 7, followed by a steep decline
toward z = 0. All references given in square brackets refer to a
rather high median mass of ∼ 1010M⊙.

Rodighiero et al. 2010; González et al. 2010; Magdis et al.
2010a,b; McLure et al. 2011). except for three higher esti-
mates (Yabe et al. 2009; Schaerer & de Barros 2010, Shim
et al. 2011)2. The main reason for these higher estimates is
the larger correction for dust extinction assumed by these
authors (to be discussed in section 5.3), as well as different
treatments of nebular emission lines and different assump-
tions concerning star-formation histories (to be discussed in
section 4.6). Additionally, Shim et al. (2011) only include
galaxies with indications for Hα emission, which will bias
the estimate of the sSFR high. We note that all the esti-
mates above do not include submillimeter galaxies, which
are outliers to the relation between stellar mass and SFR,
simply because these tend to have stellar masses above the
limit we consider here (e.g. Daddi et al. 2007). At z < 2,
the sSFR declines steeply (Noeske et al. 2007; Elbaz et al.
2007; Dunne et al. 2009; Oliver et al. 2010; Rodighiero et
al. 2010). The grey belt in Fig. 1 tries to capture the overall
trend, reflecting an uncertainty of ±0.3 dex as estimated by
González et al. (2010), and ignoring the two high estimates.
As will be discussed below, this observed sSFR plateau is
puzzling — its level is surprisingly high at z ∼ 2 and sur-
prisingly low at z > 4. For the purpose of the theoretical
analysis of the current paper, we adopt the sSFR plateau as
marked by the grey belt.

2 We obtained part of the estimates by dividing the median SFR
by the median stellar mass (for Yan et al. 2006; Eyles et al. 2007;
Yabe et al. 2009). In some other cases, the estimates are based
on an extrapolation of the sSFR-stellar mass relation to a stellar
mass of ∼ 0.5·1010M⊙ (Daddi et al. 2007; Rodighiero et al. 2010).
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Figure 2. Evolution of sSFR in the SAMs of NW10, and of
the specific dark matter accretion rate. Shown are four different
models (I, II, III and V, with results of models II and V being
indistinguishable and thus represented by one line) by the SAM
of NW10 for galaxies in the mass range [2 ·109, 1010] M⊙ (curves
in colour). The completeness limits trying to mimic the observed
ones are described in the text. In all models the sSFR is steeply
declining in time, not reproducing the observed sSFR plateau
marked by the grey belt from Fig. 1. Also shown is the specific
dark matter accretion rate onto haloes of log(Mhalo) ∼ 1012M⊙

according to Neistein & Dekel (2008) (dashed black line), and the
same quantity multiplied by a factor of 2, to account for the effect
of instantaneous mass loss from newly formed stars, as assumed
in the models (solid black line).

2.2 Tension with theory

Here, we outline the main potential points of tension be-
tween the observed sSFR and theoretical predictions both
from relatively detailed SAMs and simple analytical argu-
ments.

2.2.1 Tension with SAMs

In Fig. 2, we show the sSFR as a function of redshift at
a fixed mass for four of the models presented in NW10, in
comparison with the observed sSFR plateau. To account for
the observational completeness limit as indicated by Stark
et al. (2009), we only take into account model galaxies with
log(SFR) > 0.25, 0.45 and 0.5 yr−1 at z=4, 5 and 6 respec-
tively. The four models are described in detail in NW10 with
the same numbering used here and can be summarized as fol-
lows: I) model without SN feedback, II) model without ejec-
tive SN feedback, III) model including cold accretion [which
is the model most similar to other standard SAMs], and V)
model in which cooling and star formation shuts down af-
ter major mergers. All of those models have been tuned to
reproduce key observables like the stellar mass functions at
different redshifts, and star formation rate at z=0. Remark-
ably, all models show an extremely similar behaviour despite
their fundamental differences, all in disagreement with ob-
servations. They overestimate the sSFR by about an order
of magnitude at z ∼ 6, and underestimate it by around 0.3
dex at z ∼ 2.

Other current SAMs show a similar behaviour. For ex-
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