QUANTUM GRAVITY & BLACK HOLES

Teresa Bautista Solans LPTHE Advisor: Atish Dabholkar

March 13, 2014

Projects

1.- Timelike Liouville Theory

2.- Quantum Black Holes

TIMELIKE LIOUVILLE THEORY

- Timelike Liouville Theory: model for 2d Quantum Gravity
 - Liouville: CFT for $\phi(\sigma)$, $g_{ab} = e^{2\phi(\sigma)}h_{ab}$
 - Timelike: $-\partial_a \phi \partial_b \phi$
- QG in **Cosmology**: quantum corrections to classical dynamics of the **conformal factor**
- Problems of 4d QG:
 - \bullet unbounded Euclidean action \longrightarrow negative-norm states
 - $\bullet\,$ non-renormalizable \longrightarrow instead TL is renormalizable

TIMELIKE LIOUVILLE THEORY

• Progress: BRST quantization

- BRST operator Q
- Closed states: $Q|\phi\rangle_{phys}=0.$ But not exact: $|\phi\rangle_{phys}\neq Q|\psi\rangle$

ToDo: understanding correlation functions, finding semiclassical solutions.

QUANTUM BLACK HOLES

- Entropy \sim Area of the BH
 - limit of large area: Bekenstein-Hawking formula

$$S_{BH} = \frac{A}{4}$$

• finite area:

$$S_Q = a_0 A + a_1 \log A + \dots + \frac{a_2}{A^2} + \dots$$

 Geometrical Entropy is Thermodynamical: BH is an ensemble of states

$$S_{micro} = \log[d(states)] = S_Q$$

QUANTUM BLACK HOLES

• To compute d(states) use **AdS/CFT** correspondence:

extremal BH:dual CFT:AdS geometry \leftrightarrow use modular formsnear horizon $d(states) \in \mathbb{Z}$

• So far, $e^{S_Q} \approx \mathbb{Z}$.

For exact agreement: need **non-perturbative contributions**.